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Resonant Modes of a Concentric Spherical Cavity
with Conically Stratified Medium

Pirapaharan Kandasamy, Student Member, IEEE,and Nobuo Okamoto, Life Member, IEEE

Abstract—An analysis on electromagnetic fields of a cavity
formed by two concentric conducting spheres with a conically
stratified medium is presented in this paper. Angular transmission
formulation and the radial eigenfunction expansion are used to
formulate the field components. Boundary matching methods
are applied to obtain the characteristic equations containing
various infinite series of spherical Hankel functions and Legendre
functions of complex order for resonant frequencies. The first
two resonant frequencies and field expansion coefficients are
determined numerically. The distribution pattern of angular
field components and the forms of typical electric field lines and
magnetic field lines for the first resonant fields are also indicated.

Index Terms—Cavity resonators, cones, dielectric devices, elec-
tromagnetic fields, mode-matching methods.

I. INTRODUCTION

A N ANALYSIS on electromagnetic fields related to a con-
ducting sphere or a multilayered dielectric sphere can be

performed analytically since a method of separation of variables
can be effectively applied to Maxwell’s equation and boundary
conditions expressed in the spherical coordinates for spherically
stratified regions [1], [2]. It is known that these results are being
used well in the field of microwave and lightwave engineering.
Similarly, a conducting conical horn is also an electromagnetic
wave-guidingsystem,which isanalyzedbythemethodofsepara-
tion of variables in the spherical coordinate system. These wave-
guiding systems are used as a taper or a conical conducting horn
antenna in themicrowaveengineeringfield,andtheirdesigntech-
niques are also well established [3].

A dielectric circular cone or a dielectric-coated circular horn
is also an electromagnetic wave-guiding system. These are also
usedasa taperoradielectricantenna in lightwave andmicrowave
engineering. Due to the practical importance of these configura-
tions, they have been subject to numerous investigations [4]–[7].

However, an analytical solution for this wave-guiding system
has not yet been found, except for a perturbed approximate so-
lution [8]. Also, a method of solution has been given that em-
ploys a number of assumptions and simplifications in order to
overcome the mathematical difficulties of this type of problem
[9]. Another method has been proposed by using the surface
impedance concept to avoid the boundary matching of the field
components expressed in the form of the separation of variables
in the spherical coordinate system [10], [11].

In fact, in a dielectric conical wave-guiding system, tangen-
tial-field components at the conical boundary surface are ex-
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pressed in terms of spherical Hankel functions with different
arguments corresponding to the medium on each side of the
boundary. Hence, it is not so simple to match the boundary con-
ditions as in the conducting conical wave-guiding system.

Recently, a method of mode matching for this problem has
beenproposed,but isnotsufficient [12].Anothermode-matching
method has also been proposed, which uses the radial eigen-
functions defined in the exterior region of a small conducting
sphere at the tip of the dielectric coated conducting cone, where
the authors have also overcome the singularity of the Hankel
function by placing a small conducting sphere at the tip of the
cone [13]. A similar idea has been used to avoid this singularity in
the analysis of a dielectric-coated conducting wedge by placing
a small conducting cylinder at the tip of the wedge [14].

A resonant cavity, which is formed by two concentric con-
ducting spheres, filled with a conically stratified medium is also
an interesting system for the application in microwave and light-
wave engineering. However, no literature has been found as far
as we know. In this paper, we analyze the electromagnetic fields
of this resonant cavity in order to investigate the characteristics
of electromagnetic fields in the conically stratified medium. We
formulate the boundary-value problem using a standard mode-
matching technique.

Assuming that the electromagnetic fields, rotationally sym-
metric, are independent of azimuthal anglein the spherical
coordinate system ( ), we derive transmission equations of
electromagnetic fields in the direction of polar angle. Next, we
introduce radial expansion eigenfunctions of two types in each
dielectric medium subject to the boundary conditions on the two
conducting spheres. The first type is the transverse-electric type
to (TE-to- , type) and the other is transverse-magnetic type
to (TM-to- , type). Expanding the electromagnetic fields by
the expansion eigenfunctions, we derive thetransmission-line
equations in each dielectric medium. Determining the field
components and applying boundary conditions at the interface of
dielectric cones, we derive the characteristic equations to deter-
mine theresonant frequencyof thecavity.Analyzingnumerically
thecharacteristicequations,weobtain resonanteigenfrequencies
and electromagnetic eigenfields. The distribution pattern of
angular field components are shown. The forms of the typical
field lines for first resonant frequency of both TM and TE fields
are also indicated.

II. FORMULATION OF THE ELECTROMAGNETICFIELDS

A. - and -Type Field Equations

The geometry of a cavity resonator, analyzed here, is shown in
Fig. 1. We use the spherical coordinate system for our analysis,
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Fig. 1. Schematic diagram of a concentric spherical cavity with conically
stratified dielectric medium.

as shown in Fig. 1. The cavity consists of two concentric per-
fectly conducting spheres. The region bound by two spheres is
filled with a conically stratified dielectric medium. In the spher-
ical coordinate system, the phasor form of Maxwell’s equations
in a source-free region are given as follows:

(1)

(2)

(3)

(4)

(5)

(6)

We assume that and in medium 1 ( )
and and in medium 2 ( ). The
time dependence is assumed and suppressed throughout.
Assuming that the fields are independent of azimuthal angle,
we can separate equations from (1)–(6) into two groups as fol-
lows:

-type (TM-to- )

(7)

-type (TE-to- )

(8)

The field components of type are , , and , and those
of type are , and . From (7), we obtain

(9)

where (9) is the transmission-field equations of the TM field
[15]. We also obtain from (8) the following:

(10)

Equation (10) is the transmission-field equations of the TE
field [15].

B. Expansion Eigenfunctions

Here, we introduce the eigenfunctions.
1) -Type Eigenfunctions: and ( ):

(11)

(12)

where , , ,
, and . We assume that the eigenfunctions

( ) satisfy the following orthonormal relation:

(13)

where is Kronecker’s delta. We write a solution of (11) as
follows:

(14)

where is the spherical Hankel function used by
Debye and Schelkunoff [16]. It is related to the Hankel function
by . The constant is
determined by the normalization condition as follows:

(15)

and the constant is determined by the boundary conditions
as follows:

(16)

where the prime () denotes the differentiation with respect to
its argument.

We further define as follows:

(17)
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2) -Type Eigenfunctions: and ( ):

(18)

(19)

(orthonormal relation)

(20)

(21)

(22)

and the constant is determined by the boundary conditions
as follows:

(23)

We further define as follows:

(24)

C. -Transmission Formulations

We expand the field by -type eigenfunctions and . In
(9), assuming that

(25)

and applying the orthonormal relation (13), we obtain

(26)

Equation (26) is the transmission-line equation in the-direc-
tion for TM fields. Eliminating from (26), we obtain

(27)

Solutions of (27) are expressed by the Legendre function
and as follows:

(28)

Similarly, in (10), assuming that

(29)

and using the orthonormal relation (20), we obtain

(30)

Equation (30) is the transmission-line equation in the-direc-
tion for TE fields. Eliminating from (30), we obtain

(31)

Solutions of (31) are also expressed by the Legendre function
as follows:

(32)

Finally, we express the electromagnetic fields in mediums 1 and
2 by a series expansion of orthonormal functions as follows.:

For -fields in medium 1

(33)

(34)

(35)

For -fields in medium 1

(36)

(37)

(38)

For -fields in medium 2

(39)
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(40)

(41)

For -fields in medium 2

(42)

(43)

(44)

where

(45)

(46)

and and denote derivatives of and with respect
to their argument, respectively.

III. CHARACTERSTICEQUATIONS

At the conical surface boundary of two media, the tangen-
tial component of the electromagnetic field must be continuous.
Thus, we have

(47)

(48)

(49)

and

(50)

From (33), (39), and (47), we obtain the following:

(51)

Multiplying both sides of (51) by and integrating

from to , we obtain

(52)

Similarly, we obtain from (35), (41), and (48)

(53)

Further, from (36), (42), and (49)

(54)

and from (38), (44), and (50)

(55)

where

(56)

(57)

We simplify the pair of equations (52) and (53) as follows:

(58)

Similarly the pair of equations (54) and (55) can be simplified
as follows:

(59)

where

(60)
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(61)

By truncating the number of terms according to the required
accuracy, we write (58) in a finite dimensional matrix form

(62)

where

(63)

and

(64)

Similarly, (59) can also be written in the finite dimensional ma-
trix form

(65)

where

(66)

and

(67)

From the condition for the nontrivial solution of and , the
determinant of matrix and must be zero as follows:

(68)

and

(69)

Equation (68) associated with (16) and (69) associated with (23)
are the characteristic equations for the resonant modes of the
cavity. Analyzing (68) and (16) numerically, we determine the
resonant frequencies of TM fields of this cavity. Similarly, from
(69) and (23), the resonant frequencies of the TE field are de-
termined. Once we find the resonant frequencies, we can obtain
the field expansion coefficients.

Fig. 2. Solutions ofĤ (Z)Ĥ (Zb=a)� Ĥ (Zb=a)Ĥ (Z) = 0
(for the TM field) whenb=a = 5. X-, Y -, andZ-axes represent real� ,
imaginary� , and

p
" k a, respectively.

Fig. 3. Solutions ofĤ (Z)Ĥ (Zb=a)� Ĥ (Zb=a)Ĥ (Z) = 0 (for
the TE field) whenb=a = 5.X-, Y -, andZ-axes represent real� , imaginary
� and

p
" k a, respectively.

IV. EVALUATION AND RESULTS

A. Resonant Frequencies and Field Expansion Coefficients

Rewriting (16) and (23) for the convenience of computation,
we have

(70)

for the TM field and

(71)

for the TE field. Here, we assume that

for medium 1

for medium 2.
(72)

We numerically analyze (68) and (70) for the TM field and (69)
and (71) for the TE field. For convenience, a graph ofas
a function of determined from (70) and a graph of as a
function of determined from (71) are shown in Figs. 2 and 3,
respectively. We also refer to the literature for the computation
of specific functions [17]–[20].
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TABLE I
RESONANT FREQUENCIES WITH THENUMBER (N ) OF EXPANSION

EIGENFUNCTIONSTAKEN FOR COMPUTATION

TABLE II
FIRST 15 FIELD EXPANSION COEFFICIENTS INEACH MEDIUM FOR THE FIRST

RESONANT FREQUENCY OFTM AND TE FIELDS

For a given , we calculate the (68) via (70) for the TM
field and (69) via (71) for the TE field. In computation, and

are calculated to at least 12 digits of accuracy for a given.
We calculate the resonant frequencies by taking first five, ten,
and 15 expansion eigenfunctions. Table I shows the resonant
frequencies with the number () of expansion eigenfunctions
taken into account for the computation. It is clear from the re-
sults that by taking 15 expansion eigenfunctions, we can calcu-
late the resonant frequencies to at least seven digits of accuracy.

Finally, the field expansion coefficients are also calculated
at the first resonant frequencies of the TM and TE fields, and
the results are shown in Table II, which shows that the expan-
sion coefficients are converging to zero. By taking 15 expansion
eigenfunctions, we can evaluate the field components to at least
three digits of accuracy.

B. Field Distributions and Field Lines

We three-dimensionally show the distribution pattern of the
electric-field component for TM fields and the magnetic-
field component for TE fields on the coordinate surface in
the cavity both with a conically stratified medium and a homo-
geneous medium in Figs. 4 and 5, respectively. Figs. 4(a) and
5(a) show that the electromagnetic fields are bound by a con-
ical dielectric and the fields outside the conical dielectric are
evanescent toward the surface . These results are under-

(a)

(b)

Fig. 4. (a) Field-distribution pattern ofE for the first resonant frequency
(k a = 0:40584501) of a concentric spherical cavity with conically stratified
medium whenb=a = 5, " = 4, " = 1, and� = �=4. (b) Field-distribution
pattern ofE for the first resonant frequency (k a = 0:52397273) of a
concentric spherical cavity with homogenous medium whenb=a = 5 and
" = 1. Throughout,x-, y-, andz-axes representr, �, andE (relative value),
respectively.

stood from the fact that the resonator of a circular dielectric rod
shielded by two conducting plates is a limiting form of the cavity
resonator treated here [21].

We show the forms of typical field lines of both the TM and
TE fields for the first resonant frequencies. For comparison, the
electric field lines of the TM fields of the concentric spherical
cavity both with a conically stratified medium and with a ho-
mogeneous medium are shown in Fig. 6. Similarly, the mag-
netic field lines of the TE fields of the concentric spherical
cavity both with a conically stratified medium and with a ho-
mogeneous medium are also shown in Fig. 7. The broken lines
in Fig. 6 show the locus of the points where . Also,
the broken lines in Fig. 7 show the locus of the points where

. The broken lines in Fig. 6 (where ) and Fig. 7
(where ) show that the bounce between two concentric
conducting spheres with a conically stratified medium is not so
simple as that between two concentric conducting spheres with
a homogeneous medium.
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(a)

(b)

Fig. 5. (a) Field-distribution pattern ofH for the first resonant frequency
(k a = 0:69242092) of a concentric spherical cavity with conically stratified
medium whenb=a = 5, " = 4, " = 1, and� = �=4. (b) Field-distribution
pattern ofH for the first resonant frequency (k a = 0:93728100) of a
concentric spherical cavity with homogenous medium whenb=a = 5 and
" = 1. Throughout,x-, y-, andz-axes representr, �, andH (relative value),
respectively.

V. CONCLUSION

In this paper, we have presented an analysis on electromag-
netic fields of a cavity formed by two concentric conducting
spheres filled with a conically stratified medium. Formulating
the field problem using -transmission field equations and ra-
dially expanding eigenfunctions, we obtained the resonant fre-
quencies and their respective fields in series form. Results have
proven that the resonant mode fields in the cavity filled with a
conically stratified medium could be expressed in terms of about
15 radially expanded eigenfunctions with the accuracy to at least
three digits. Further, we indicated the forms of the typical elec-
tric- and magnetic-field lines for the first resonant TM and TE
modes in cases of both conically stratified medium and homo-
geneous medium, and also showed the distribution pattern of the
angular field components on the azimuthal coordinate surface.
We observed from the patterns of the field distribution that the
electromagnetic fields are bounded by a conical dielectric and

(a) (b)

Fig. 6. (a) Electric-field lines of the TM field for the first resonant frequency
(k a = 0:40584501) of a concentric spherical cavity with conically stratified
medium whenb=a = 5, " = 4, " = 1, and� = �=4. (b) Electric-field
lines of the TM field for the first resonant frequency (k a = 0:52397273) of
a concentric spherical cavity with homogenous medium whenb=a = 5 and
" = 1. Throughout, the broken lines indicate the locus of points where the
radial component of the electric field vanishes.

(a) (b)

Fig. 7. (a) Magnetic-field lines of the TE field for the first resonant frequency
(k a = 0:69242092) of a concentric spherical cavity with conically stratified
medium whenb=a = 5, " = 4, " = 1, and� = �=4. (b) Magnetic-field
lines of the TE field for the first resonant frequency (k a = 0:93728100) of
a concentric spherical cavity with homogeneous medium whenb=a = 5 and
" = 1. Throughout, the broken lines indicate the locus of the points where the
radial component of magnetic field vanishes.

evanescent toward the surface . Moreover, we found that
the locus of the points, where the radial components of the elec-
tromagnetic field vanish, is not a straight line in the case of a
cavity with a conically stratified medium, while it is a straight
line in the case of a cavity with a homogeneous medium. These



118 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 1, JANUARY 2001

results mean that the bounce of the electromagnetic fields be-
tween two concentric conducting spheres with conically strati-
fied medium is not a simple bounce, as in the case of two con-
centric conducting spheres with a homogeneous medium.
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