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Resonant Modes of a Concentric Spherical Cavity
with Conically Stratified Medium
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Abstract—An analysis on electromagnetic fields of a cavity pressed in terms of spherical Hankel functions with different
formed by two concentric conducting spheres with a conically arguments corresponding to the medium on each side of the
stratified medium is presented in this paper. Angular transmission boundary. Hence, it is not so simple to match the boundary con-

formulation and the radial eigenfunction expansion are used to diti in th ducti ical idi t
formulate the field components. Boundary matching methods ¢ONS as In the conducting conical wave-guiding system.

are applied to obtain the characteristic equations containing  Recently, a method of mode matching for this problem has
various infinite series of spherical Hankel functions and Legendre been proposed, butis not sufficient[12]. Another mode-matching
functions of complex order for resonant frequencies. The first method has also been proposed, which uses the radial eigen-
two resonant frequencies and field expansion coefficients are ,ctions defined in the exterior region of a small conducting
determined numerically. The distribution pattern of angular . . . .

4 SPhere at the tip of the dielectric coated conducting cone, where

field components and the forms of typical electric field lines an . X
magnetic field lines for the first resonant fields are also indicated. the authors have also overcome the singularity of the Hankel

Index Terms—Cavity resonators, cones, dielectric devices, elec- function by p!acling. a small conducting sphe_re a.t th.e tip Of. th_e
tromagnetic fields, mode-matching methods. cone[13]. Asimilaridea has been used to avoid this singularity in
the analysis of a dielectric-coated conducting wedge by placing
a small conducting cylinder at the tip of the wedge [14].

A resonant cavity, which is formed by two concentric con-

N ANALYSIS on electromagnetic fields related to a conducting spheres, filled with a conically stratified medium is also

ducting sphere or a multilayered dielectric sphere can & interesting system for the application in microwave and light-
performed analytically since a method of separation of variablegive engineering. However, no literature has been found as far
can be effectively applied to Maxwell’s equation and boundags we know. In this paper, we analyze the electromagnetic fields
conditions expressed in the spherical coordinates for sphericaifythis resonant cavity in order to investigate the characteristics
stratified regions [1], [2]. It is known that these results are beirgf electromagnetic fields in the conically stratified medium. We
used well in the field of microwave and lightwave engineeringormulate the boundary-value problem using a standard mode-
Similarly, a conducting conical horn is also an electromagnetigatching technique.
wave-guiding system, whichis analyzed by the method of separaAssuming that the electromagnetic fields, rotationally sym-
tion of variables in the spherical coordinate system. These waweetric, are independent of azimuthal anglén the spherical
guiding systems are used as a taper or a conical conducting hewardinate system( 6, ¢), we derive transmission equations of
antennainthe microwave engineering field, and their design teettectromagnetic fields in the direction of polar angjlélext, we
nigues are also well established [3]. introduce radial expansion eigenfunctions of two types in each

A dielectric circular cone or a dielectric-coated circular horgdielectric medium subject to the boundary conditions on the two
is also an electromagnetic wave-guiding system. These are alsoducting spheres. The first type is the transverse-electric type
used as ataperoradielectric antennain lightwave and microwdeé (TE-to-f, H type) and the other is transverse-magnetic type
engineering. Due to the practical importance of these configuta¥ (TM-to-6, £ type). Expanding the electromagnetic fields by
tions, they have been subject to numerous investigations [4]-[tfje expansion eigenfunctions, we derive glteansmission-line

However, an analytical solution for this wave-guiding systemquations in each dielectric medium. Determining the field
has not yet been found, except for a perturbed approximate somponents and applying boundary conditions at the interface of
lution [8]. Also, a method of solution has been given that englielectric cones, we derive the characteristic equations to deter-
ploys a number of assumptions and simplifications in order toine the resonantfrequency of the cavity. Analyzing numerically
overcome the mathematical difficulties of this type of problerihe characteristic equations, we obtain resonant eigenfrequencies
[9]. Another method has been proposed by using the surfawed electromagnetic eigenfields. The distribution pattern of
impedance concept to avoid the boundary matching of the figdtigular field components are shown. The forms of the typical
components expressed in the form of the separation of varialfiedd lines for first resonant frequency of both TM and TE fields

I. INTRODUCTION

in the spherical coordinate system [10], [11]. are also indicated.
In fact, in a dielectric conical wave-guiding system, tangen-
tial-field components at the conical boundary surface are ex- || EorRMULATION OF THE ELECTROMAGNETIC FIELDS
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Schematic diagram of a concentric spherical cavity with conically

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 1, JANUARY 2001

The field components of type areH,, E,., andEy, and those
of H type arel,,H, and Hs. From (7), we obtain

or*E.) ., 1 9*rHy)
— . H
o6 Jopr=\ T+ w2pe  Or?
1 8(rsin 6H,)
sin 6 a6

where (9) is the? transmission-field equations of the TM field
[15]. We also obtain from (8) the following:

9)

= jriwekE,

2 [ 1 2(r B
OH) Ll 1 R
a6 w2ps  Or? (10)
1 O(rsin 6E,) i
= —jriwpH,
smf 00 Ik

as shown in Fig. 1. The cavity consists of two concentric pell_:,_quation (10) is the? transmission-field equations of the TE
fectly conducting spheres. The region bound by two sphereéc'?s!d [15].

filled with a conically stratified dielectric medium. In the spheri3
ical coordinate system, the phasor form of Maxwell's equations

in a source-free region are given as follows:

. siln 5 8(811(1399H¢) - Siln 7 a(afjf) —jweE, (1)
. a(a}jf) - agf“ —jweEs  (2)
e e

R SRR ST
A LB i, )
19(rEs) 10(E,) — jeut, ©)

r  Or r 00

We assume that = 1190 ande = gpe; inmedium 10 < 0 < «)
andy = pg ande = ggez in medium 2 ¢ < 6 < w). The

time dependence’** is assumed and suppressed throughout.
Assuming that the fields are independent of azimuthal apgle
we can separate equations from (1)—(6) into two groups as fg

lows:

E-type (TM-to9)
19(rEs) 1 0(E;)

= —juuH,
r  Or r 00 Jwoktle
1 O(sin 6Hy) .
= . 7
r sin 6 o0 Jwek, 0
VoGt
r  Or
H-type (TE-to#)
1 9(rHg) 1 8(H,) )
Z _z — jweE
r  Or r 00 Jweke
1 O(sin 6F,) .
= . 8
7 sin oo Jend, (®)
1 O0(rE .
LOEs) _ i,

r  Or

. Expansion Eigenfunctions

Here, we introduce the eigenfunctions.
1) E-Type Eigenfunctionz“andhf(i =1, 2, 3, ...):

A2 (hE Kilk; +1
%Jr(l—%)hf:(l Pa <0< po
(11)
OhF
i —0 (12)
8p Ziga

wherep = /e, kor 2 V€5 Po, ko = w \/loga, pa = ko 1/25 a,
py = ko /€5 b, ands = 1, 2. We assume that the eigenfunctions
hE (i =1, 2,3, ...)satisfy the following orthonormal relation:

/ o hE(p)hF (p)

pe dp = bi;

(13)
whereé;; is Kronecker’s delta. We write a solution of (11) as
follows:

(14)

hf =pf [ffﬁ)(p) +AF ff@(p)}
here A ®(p) is the spherical Hankel function used by
ebye and Schelkunoff [16]. It is related to the Hankel function
by AP (p) = (mp/2)\2HY: ) (). The constanp? is

. Rl /2NE
determined by the normalization condition as follows:
1
(pF)? = 5 o 7 (15)
o [HD () + APAD ()]
[,

P

Pa

and the constant? is determined by the boundary conditions
as follows:

He (p) _ HE (p) _
B (0) B () '

(16)

where the prime’] denotes the differentiation with respect to
its argument.

We further defineX as follows:
I — _hF]

c; e

17
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2) H-Type Eigenfunctions: andhf(i =1, 2, 3, ...):

82(65) n <1_ l/i(l/i—i—].)) o

dp p?
=0, Pa <P < pu (18)
eff| p=ra =0 (19)
P=rp
e o H
/ G (p)? () dp = 6;; (orthonormal relation)
Pa p
(20)
eff = plf [HD (0)+ NTHD (p)]
(21)
Hy2 1
i) = (1) 72 112
"Pb |:HV7' (p)+)‘£{HVi (p):|
/ p? i
(22)
and the constant/ is determined by the boundary condition
as follows:
H(pa) _ B () _
P o e (23)
Hz/i (pa) Hl/i (pb)
We further defineh! as follows:
Wi = oM (24)

C. #-Transmission Formulations

We expand the field by -type eigenfunctions”andhF. In
(9), assuming that

2B, =3 V)l (o)
' (25)

1
rHy = 3 IEOME ()

and applying the orthonormal relation (13), we obtain

oVi®) _ _jmi(ri+1)

sin 6 50 c ; 6
a(I7E) _ ai QVE
59 — Jwesin bV,

Equation (26) is the transmission-line equation in éhdirec-
tion for TM fields. EliminatingZ* from (26), we obtain

o(vi¥)
a6

Loy
sin 6 06 \°

) +ri(r FDVE =0 (27)

Solutions of (27) are expressed by the Legendre function

P, (cos 6) and P, (— cos 8) as follows:

i

(L p(1)
VE:{Ci Py’ (cos 8), 0<h<a (28)

' CfQ)P,g)(— cos 6), a<f<m.
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Similarly, in (10), assuming that
r2H, = > 17O (p)

1
S H H
o =3 g O )

(29)

and using the orthonormal relation (20), we obtain

H
sin Ha(li ) =

oo

_jl’i(l’i + 1)
Wt

VH

0
o) o

a6

Equation (30) is the transmission-line equation in éheirec-
tion for TE fields. EliminatingV;* from (30), we obtain

o)
a6

= —jwp sin 617

L9 (.,
sing oo \°

Solutions of (31) are also expressed by the Legendre function

) + (v + DIE = 0. (31)

%s follows:

0<li<a

(1) p(1)
H {Di P (cos 6), (32)

DZ@P,S?)(— cos ), a<f<.

Finally, we express the electromagnetic fields in mediums 1 and
2 by a series expansion of orthonormal functions as follows.:

For E-fields in medium 1
Cfl)Pﬁ(_l) (cos 6)

=y e (e )
ko \/EG(I) 2 P _1y(cos 6)
@ _ T B
£y = Z 7%(1) (ﬁ(l) N 1) U"’z('m (\/apo)
(34)
jweoelCm 3 P _1y(cos 6)
1 a8 s E
H;' = v (1>(\/apo)-
b 2; mgl) (ﬁgl) n 1) !
(35)
For H-fields in medium 1
) Dgl)Pym(COS 6) "
H1(* ) = Z ;—2 Uy;l) (\/apo) (36)
ko /21 DY 9 p w (cos 6)
1 ® v, 7
He( ) = Z o 8(91) Uj{w (\/apo)
i TV, (l/i + 1) :
(37)
. @ 0
JwpoD;” — P 1y(cos 6)
(1 08w H
E, = | .
P EZ: e (l/(l) N 1) U,,g » (VET po)
(38)
For E-fields in medium 2
) C;Q)PK(_Q)(—COS 6) .
EP == — U*., (vz2po) (39)

D
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0\/_0(2)—P<2>( cos )

Ef(’Q) - UE, (\/z2 po)
zi: 7%52) (1@(2) + 1) i
(40)
@) jw<?0520i( 889 P (2)( cos ) .
H¢ = Z ] (2) (2) UHSZ) (\/5 po) .
i e, (k7 +1
(41)
For H-fields in medium 2
) Di(Q)PV_(z)(—COS ) "
HP =% e UL (V22 p0) (42)
ko /&2 D 9 p (= cos 6)
(2) _ a0 "
Hy” = z; ey (1/(2) N 1) UV52> (V2 po)
(43)
2 9
JwpoD; —P(z)( cos )
(2) _ af H
E¢ - zz: 71/(2) (1/(2) + 1) in(2> (\/apo)
(44)
where
U,f(s) (\/apo)
() ()
= o [ B, (Ve )+ AT B (Ve )]
s=1, 2 (45)
UL (VEs po)
) | 4 () £
=p;' {H,(,% (VEs po) + A Hf)> (Ves Po)} ;
s=1,2 (46)

andUF" andU’ denote derivatives df " andU with respect
to their argument, respectively.

Ill. CHARACTERSTIC EQUATIONS
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Multiplying both sides of (51) by/ £ es (\/E_lpo) and integrating
from» = o to+ = b, we obtain "

C«(?) P (2>( cos «)

ot = FE(G,i). (52
Z VE Paesa) Gri)- (52)
Similarly, we obtain from (35), (41), and (48)
a
20 PK52>(— cos 0) Y
J €1 - \/a o K ’ .
20 P (1)(COS 6) Y
L,.D
ki (k; 4+ 1)
(53)
Further, from (36), (42), and (49)
@ P <2>( cos «)
w_\ D He s
D Fr (g, 1 4
Z \/_ P (1)(COS a) v (Ja [’) (5 )
and from (38), (44), and (50)
a
%8 PV§2>(— cos 0) Y
(2) (2),,(2)
D; v (v, 41 L
i = XJs T D piGy 69)
20 PVJ(_1)(COS 6) -
l/](»l)(l/](»l) +1)
where
. koo UT o) (vEzpo) UL Ne (v po)
Fy (J7 [’) = / 5 dpo (56)
koa pO
. kob UL @ (VEzp0) U (1> (vEL po)
(5, 4) = /k o dpo.  (57)
°0 @ 0

We simplify the pair of equations (52) and (53) as follows:

> CPP, (= cos ) FE (), )GE(, i) =0,

At the conical surface boundary of two media, the tangen- i

tial component of the electromagnetic field must be continuous.

Thus, we have

E, |5r o =k |;Tae+20 (47)
H¢| Er= 51 —H¢|957’a120 (48)
H| s =H, |9r:+20 (49)
and
E¢|;r 2 —E¢|95ra120. (50)
From (33), (39), and (47), we obtain the following:
Cfl)Pﬁ(_l)(cos ) .
Z ;,2 —Uﬂgm(\/apo)
CfQ)PH(_z)(—COS ) .
=S — UE, (Ve po). (51)

%

j=1,2,3, ... (58)

Similarly the pair of equations (54) and (55) can be simplified

as follows:
ST DPP ey (— cos a)FH (5, )G (5, 1) = 0,

j=1,23, ... (59)

where
GE(j, 1)
cos aP ) (—cos a) + P ) (—cos a)
€2 @ 7
(r;” + 1P (2 (—cos a)
=<1 i

cos OéPK-gl) (cos «) — Png_m_l(cos @)

ct M
(k;7 + 1P 1y (cos @)

(60)
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G;{{(/v L) Kr) Ks \“‘ 7 K Ks
cos aP (2 (—cos @) + P 2 _ (—cos a)
i i Ky
(1/52) + )P (2 (—cos )
- cos al’ ay(cos a) — P oy (cos a)
(1/](1) + 1)PV§_1> (cos )
(61) 5

By truncating the number of terms according to the require
accuracy, we write (58) in a finite dimensional matrix form X Y

Fig. 2. Solutions o7 (V' (Z2)H @' (Zb/a) — HY' (Zb/a)HD' (Z) = 0
(for the TM field) whenb/a = 5. X-, Y-, and Z-axes represent real,,

, i i <:, and /e, koa, tively.
R- X = [qu]NxN' [371(72)]1\’><1 _ [O]le (62) imaginaryx;, and,/z, koa, respectively.

where

a:g) = C’]()Q)PKS}) (—cos ) (63)
and

roq = FE(p, 9)GE(p, 9)- (64)

Similarly, (59) can also be written in the finite dimensional ma X
trix form

Fig. 3. Solutions oH (D (Z)H{2(Zb/a)— HV (Zb/a)HP (Z) = 0 (for
the TE field) wherb/a = 5. X-, Y-, andZ -axes represent rea}, imaginary
v; and /&, koa, respectively.

S : Y = [Spq]NxN : I:y]()Q)] Nx1 = [O]J\TXI (65)
IV. EVALUATION AND RESULTS

where
A. Resonant Frequencies and Field Expansion Coefficients
91(92) = D§2)Pu;2> (—cos a) (66) Rewriting (16) and (23) for the convenience of computation,
we have
and
spa = Fi1(p, GH (p, 9). 67)  HDP(2)HD (Zbfa) - Y (2b/0)HY' (Z) =0 (70)

From the condition for the nontrivial solution dandY’, the for the TM field and
determinant of matrix? andS must be zero as follows:

(2 A (Zb)a) — HID(Zb[a)HID(Z) =0 (71)

det[R] =0 (68) for the TE field. Here, we assume that
and
det[S] =0. (69) P { koa /€1, for medium 1 72)
koa /€2, for medium 2.

Equation (68) associated with (16) and (69) associated with (23)

are the characteristic equations for the resonant modes of tile numerically analyze (68) and (70) for the TM field and (69)
cavity. Analyzing (68) and (16) numerically, we determine thand (71) for the TE field. For convenience, a graphxpfas
resonant frequencies of TM fields of this cavity. Similarly, froma function of Z determined from (70) and a graph of as a
(69) and (23), the resonant frequencies of the TE field are danction of Z determined from (71) are shown in Figs. 2 and 3,
termined. Once we find the resonant frequencies, we can obte@spectively. We also refer to the literature for the computation
the field expansion coefficients. of specific functions [17]-[20].
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TABLE |
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RESONANT FREQUENCIES WITH THENUMBER (/N') OF EXPANSION
EIGENFUNCTIONS TAKEN FOR COMPUTATION

RESONANT FREQUENCY OFTM AND TE HELDS

el M s < -
(k,a),, (koal;, (kya), (kya)s, \ ‘\\\\\\\\\\\\\\\\\\\\\\\\ ::
EEREss N\ A
. . . . Al
TABLE I X \\\\‘\\\\\\\\\\‘\\\\\\\\\ _Z;S x
FIRST 15 HELD EXPANSION COEFFICIENTS INEACH MEDIUM FOR THE FIRST \\\\\\ ‘ .

i | Expansion-coefficients at | Expansion-coefficients at r=b g 0\;0
the first resonant the first resonant
frequency of TM-field frequency of TE-field
x© x@ yo y® @

7] | Gs] | B | (5L
1 0.395989 1.000000 0.963629 1.000000
2 0.675851 -0.458736 -0.404629 0.986569
3 0.113814 0.198458 -0.109036 -0.445308
4 -0.048950 -0.085667 0.048778 0.185946
5 0.020983 0.037612 0.023115 -0.080325
6 -0.012509 -0.020611 -0.012771 0.038440
7 0.006810 -0.011179 0.007271 -0.019811
8 -0.004874 0.007540 -0.004583 -0.011249
9 0.002907 0.004548 0.002920 0.006706
10 0.002423 0.003608 -0.002009 -0.004307
11 -0.001436 -0.002200 0.001380 -0.002837
12 0.001427 -0.002072 -0.001009 -0.001982
13 0.000758 -0.001158 0.000732 0.001400
14 -0.000959 -0.001371 0.000560 0.001041
15 -0.000402 -0.000643 -0.000423 0.000803

(b)

For a givenkya, we calculate the (68) via (70) for the TM Fig. 4.
field and (69) via (71) for the TE field. In computatiof; and
v; are calculated to atleast 12 digits (.)f accurac.y for.a gk_()en ttern of £, for the first resonant frequencycda = 0.52397273) of a
We calculate th_e res_onant frequenmes by taking first five, €5 contric Sepherical cavity with homogenous medium 'Whm — 5 and
and 15 expansion eigenfunctions. Table | shows the resonant 1. Throughoutg-, y-, andz-axes represent, 6, andE, (relative value),
frequencies with the numben) of expansion eigenfunctions respectively.
taken into account for the computation. It is clear from the re-

sults that by taking 15 expansion eigenfunctions, we can cali{sod from the fact that the resonator of a circular dielectric rod

late the resonant frequencies to at least seven digits of accuragye|ded by two conducting plates is a limiting form of the cavity
Finally, the field expansion coefficients are also calculatgdsgnator treated here [21].

at the first resonant frequencies of the TM and TE fields, and\ye show the forms of typical field lines of both the TM and
the results are shown in Table I, which shows that the expafe fie|ds for the first resonant frequencies. For comparison, the
sion coefficients are converging to zero. By taking 15 expansi@fkctric field lines of the TM fields of the concentric spherical

eigenfunctions, we can evaluate the field components to at |eé‘§\trity both with a conically stratified medium and with a ho-

three digits of accuracy. mogeneous medium are shown in Fig. 6. Similarly, the mag-
) R ) ) netic field lines of the TE fields of the concentric spherical
B. Field Distributions and Field Lines cavity both with a conically stratified medium and with a ho-
We three-dimensionally show the distribution pattern of th@mogeneous medium are also shown in Fig. 7. The broken lines
electric-field componengE, for TM fields and the magnetic- in Fig. 6 show the locus of the points whefs = 0. Also,
field componen#, for TE fields on thep coordinate surface in the broken lines in Fig. 7 show the locus of the points where
the cavity both with a conically stratified medium and a homaH,. = 0. The broken lines in Fig. 6 (whem8, = 0) and Fig. 7
geneous medium in Figs. 4 and 5, respectively. Figs. 4(a) afwechereH,. = 0) show that the bounce between two concentric
5(a) show that the electromagnetic fields are bound by a caenducting spheres with a conically stratified medium is not so
ical dielectric and the fields outside the conical dielectric a@mple as that between two concentric conducting spheres with
evanescent toward the surfate= n. These results are under-a homogeneous medium.

(a) Field-distribution pattern df, for the first resonant frequency
(koa = 0.40584501) of a concentric spherical cavity with conically stratified
medium wherb/a = 5,e1 = 4,¢> = 1, anda = /4. (b) Field-distribution
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8=0
=n
(b)
e~ . N Fig. 6. (a) Electric-field lines of the TM field for the first resonant frequency

N \ ~ h - o h -
" \ AN (koa = 0.40584501) of a concentric spherical cavity with conically stratified
VA = \\\\ ~ medium wherb/a = 5,e; = 4,e2 = 1, anda = w/4. (b) Electric-field
z=0--- XK AN lines of the TM field for the first resonant frequendy, ¢ = 0.52397273) of
\\\\ -~ a concentric spherical cavity with homogenous medium when = 5 and
r=a--" \\\

\\\\\\\\\\ 2 fadil componentof e elecrc fild vanishes i

(b)

Fig. 5. (a) Field-distribution pattern dff, for the first resonant frequency
(koa = 0.69242092) of a concentric spherical cavity with conically stratified
medium wherb/a = 5,¢1 = 4,2 = 1, anda = /4. (b) Field-distribution
pattern of H, for the first resonant frequencyda = 0.93728100) of a
concentric spherical cavity with homogenous medium whém = 5 and
¢, = 1. Throughoutz-, y-, andz-axes represenmt ¢, andH, (relative value),
respectively.

V. CONCLUSION

In this paper, we have presented an analysis on electrom
netic fields of a cavity formed by two concentric conductiny
spheres filled with a conically stratified medium. Formulating ==
the field problem using-transmission field equations and ra- @) (b)
dially expanding eigenfunctions, we obtained the resonant fig. 7. (a) Magnetic-field lines of the TE field for the first resonant frequency
quencies and their respective fields in series form. Results hékres = 0.69242092) of a concentric spherical cavity with conically stratified

hat th de fields in th . .f'II d with medium wherb/a = 5,6, = 4,¢, = 1, anda = 7/4. (b) Magnetic-field
prO\_/en that t e resona_nt mode fields in the Ca_\”ty lled With i@es of the TE field for the first resonant frequendy ¢ = 0.93728100) of
conically stratified medium could be expressed in terms of abautoncentric spherical cavity with homogeneous medium vitlen= 5 and
15 radially expanded eigenfunctions with the accuracy to at leasf 1. Throughout, the broken lines indicate the locus of the points where the

L L . radial component of magnetic field vanishes.

three digits. Further, we indicated the forms of the typical elec-
tric- and magnetic-field lines for the first resonant TM and TE
modes in cases of both conically stratified medium and homevanescent toward the surfate- =. Moreover, we found that
geneous medium, and also showed the distribution pattern of the locus of the points, where the radial components of the elec-
angular field components on the azimuthal coordinate surfatemagnetic field vanish, is not a straight line in the case of a
We observed from the patterns of the field distribution that treavity with a conically stratified medium, while it is a straight

electromagnetic fields are bounded by a conical dielectric alide in the case of a cavity with a homogeneous medium. These




118

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 1, JANUARY 2001

results mean that the bounce of the electromagnetic fields bgts] N. Marcuvitz, “Field representations in spherically stratified regions,”

tween two concentric conducting spheres with conically strati-
. A ) i L6l
fied medium is not a simple bounce, as in the case of two con-

centric conducting spheres with a homogeneous medium.
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